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Abstract

Let 1 < p < ~~, and let II~(U) denote the family of all functions

f that are analytic in the unit disc U such that

2i
i lf l l~ 

— u r n  (•~;- J lf(re’°)l~dB <

Set

tl fl

a — inf sup J f(x)dx — ~~ w~f(x~,)
W
j~
Z
j ~~~

P(u) h f  11 .1 —l j—l

It is shown that given any c > 0, there exists an integer n(c) > 0,

such that if n > n(E) and q — p/(p — 1) then

exp {—(5~ir + e)n~} < a c exp{—( ‘ — c)n½}
1% (2q)

Let 0 (U) denote the family of all functions f such that

g £ H~ (U)~ where g(z) — f (z )/ ( l  — z2) ,  and where H (U) is normed by

l i f t 1 — tI g II~,
, I ku 1) being defined as above . Let {T~ ( f ) ) _,1 be an

approximation scheme defined by

n *
T~(f) (z)  — ~ £~ z~ )$ 

j
(E)~ f~ H (U)

1—1 ‘

where ~~ is analytic In U, and such that 1 1T0(f) I 1 ~ C~ I ft 1 ’
where C 1, but independent of n • Then given any £ > 0, there

exists an integer n(s) > 0 such that whenever n > n(e) , then

.zp(—(5
1
~ir + ~~~ c lof sup sup If(x) —

T0 f~;(u) l l f l i r 1 —lcz<l
.!~azP(—(—3.ç — c)n¼}

2q

-~~~~~~~~~
-
~
--. ---

~
- -— --- -~.••------——-- —-- ~~~~~~~~~~~~~~~~~ -



2F r
1. Introduction and Sumeary

Let 1 < p < , and let H
1)
(U) denote the family of all functions

f that are analytic in the unit disc U of the complex plane, such that

(1.1) I I f l I ~ _(~~~~
2W

If(re
iO)Ip dO) l/p 

<

Let a be def ined byn

(1.2) a — inf sup 
f
f(x)dx — ~~w~f(x~)

w~E~.x~EU~ fRH1’OJ), I I f I I~i 1 —1

and q by q — p / p—i .

We then prove

Theorem 1.1: Given any c > 0 there exists an integer n(c) > 0 such

that whenever n > n ( e ),  then

(1.3) exp{—(5
3
~ir + ~)n

½} < a0 < exp(— ( ~ — c)n~)(2q)

Next, let H~(U) denote the family of all functions f such that

g E H~ (U)~ where g(z) — f(z)/(1 — z2) ,  and normed by l l f 1l — I ki  I~,
where t1 g 11 ~ 

is defined as in (1.1). Let {T0
( f ) )  

~ 
be a linea- j~ : 1 I ~~~~ ‘t ’ ~

scheme defined by

(1.3) Tn
(f)(Z) ~~~~f(x

1
)+0,~

(z)

where ~~ is analytic in U for each n and j, and such that

(1.4) 11T 0(f ) 11 c C I I f I I 0

where C is independent of n • We then prove

-_ -- -- ~---
— t  - -—
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Theorem 1.2: Given any £ ) 0, there exists an integer n(c) > 0 such

that whenever n > n(c),

exp{— (54w + E)fl4}

< inf sup sup f(x) - T0( f ) (x)
(1.5) T ~a;(u)~IIf tl ;— l —l c xci

w 4< exp(—(----ç — c)n }
2q

We remark that the condition (1.4) ensures that T0
(f)  -~ f for

all f e u *(u)
• p

Let us briefly mention some other papers which are relevant to

the present work. In 1964 Wilf (23] proved for the case p — 2 that

— 0[(log n/n)4] . In 1971 Haber (6] and Johnson and Riesz (8]

proved (for p — 2) that a~ — 0(1/n) . In 1973 (171 it was

/2shown by the author that for the case p — 2, a~ — 0(e ‘~ ‘~ ) . In

1975 it was shown by Loeb and Werner [9] that for arbitrary p > 1,

a < 21+21q exp [—(n/2) ’4/(2q)J ,  where 1/p + l/q — 1

The bounds obtained in the present paper are sharper than any

others that have been obtained previously. Moreover, while there 18

gap in our upper and lower bounds, no one has previously obtained a lower

bound . Finally , no one has previously obtained any bounds of the type

in T)u . 1.2, for H —types interpolation .

It is convenient for purposes of the discussion which follows,

tout

• (1.6) a u.I~~~~~~ , b — 5 41r

_ _  -
. 

~~~~~~~~~~~~~~



S 4

and to assume, throughout, that c is an arbitrary positive number.

The results of Thea 1.1 and 1.2 may be easily extended to
½

establishing the optimal O(e~~~ ) rate of convergence in other
spaces, p > 1 , and to deduce lower bounds on the rates of convergence
of other methods of approximations. In what follows, we shall describe

some of these. We shall also mention known method s of approximation
4

in each case, which converge at the 0(e ~~ ) rate. At this time it

is not known whether or not c — y for any of these methods.

(a) Let 0 < d ~ ir/2 , let — {z—~~~y: I arg[(l+z)/(1—z)] < d}

(Note that V.1~12 U) and let Hp(Vd) denote the family of all functions

f that are analytic in such that

(1.7) I I ~I I — lie inf (J If (z) I1) IdzI)’~~ < — •

“ C+av~, cCVd C

The optimal rate of convergence of quadratures (1.2) in Hp(Vd) ~
½en0(e ) where

(1.8) a < c < b + c

The quadrature methods of The. 1.6 (b) of [17] and The. 3.2 of (18]
4

converge at the 0(5 an ) rate . The method constructed via the proof

in [9] converges at the O(exp(—[d4/(2~
”2q)Jn4}) rate.

(b) Let H ( V d) denote the family of all functions g such

that f E Hp (Vd) , where f(z) • g(z)/ ( l_ 5 2 ) ane where Hp (Vd ) is de fined

in (a) above. The optimal rate of convergence of interpolation (1.3) in

* ½
H p (Vd ) is 0(5 C0 ) , where
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(1.9) 2 4 a — c < c < b + c .  - -

The method (19)

N
f(x) * ~ f(x )S(j h) o 1og(~~~)

j— N X

S h — 
sin[~ (x—~h)/h](1.10) (j, )( x) ir (x—jh) Jh

h — (!~1) x~ — tanh (i h/2 )

• converges at the 0(exp{—[2~~a—cJn
4] rate, where n — 2N +1

(c) Let k 0 be an integer, and let H~
(Vd ) denote the family

of all f unctions f euch that g.~ ~ Hp (P d )  where H
p(Vd
) is defined

as in (a) above, and where

(1.11) gk:z) — ~ 
(1)k 

~ 
1 
k+(1+z) (l—z)

Let T0(f) be defined as in (1.3), and set

‘1 12) k 
— 

sup may sup
• n 1g~H (Vd ) , J I g J J  l j.0,l ...,k x€ (—l,l)p

k —cn~Then the optimal rate of convergence to zero of is O(
~ 

) , where
c is subject to (1.9). If T0(f) is defined by

N f (x
1
) 2 k

(1.13) T~(f)(x) — (1—x ) S(j ,h) o log(j—) where

~~~ (1—x~)
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where n — 2N + 1, and where x
1 

, S(j h) and h are def ined as in (1.10),

then (10)

(1.14) max sup 1f~~~(x) — {T ( f ))~~(~)J
j—O,l,...,k ,~ (—l ,l)

— 0(exp(—(2~~a—c)n
4}) I 1~k ’ I

(d) Let — {z — x+iy: I y I <d } , and let H
p
(P
d
) denote the

family of all functions f that are analytic in 
~d 

such that

(1.15) N(f,y) — 
(J

R

{1 ~~iy~~
1) + If(x—iy)I~} cosh

2
~~~(x/2)dx)

1
~~ <

(R — (—c’ ,o.)) for all y , 0 < y < d , and such that I I f I I ~ — N( f ,d )

(i) The optimal rate of convergence of n—point quadrature~

~~~~~~ 
V
j 
f(xj) in Hp(Vd) is 0(e

_Cfl
) , where c is subject

to (1.8). The trapezoidal rule, 
J
f(x)clx h f(jh)

h — (2wdq/N) , converges at the 0(e U ) rate, where n — 2N+l

(ii) The optimal rate of convergence of interpolation of

f€ 0
P~~d~ 

over R is O(e~~
n ) , where c is subject to (1.9).

Interpolation via the Whittaker Cardinal function, (see Eqs. (1.10))

N
f(z) ~ f(jh) S(j,h)(x) , h — (wdq/N)4

converges at the O(ezp{—(2~~a—c)n
4} rate [19].

_ _ _ _— — - - -- 

in
- •

~~
•
~~~~~~ * • • • ~~~~ - — -
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(iii) The optimal rate of convergence of the approximation

R ~ ~~~ 
~~~~~~~~~~~ , for f E 

~~~~ 
and ~~ < (nw/(2qd)J 4

is 0(e~~
0 ) , where 2~~ a c ~ b . The method 

J
f(x)e~ Ct dx ~

N
h ~ f(jh) e jht , Ii — (irdq/NY~ (The Fast Fourier transform method)

j-—N

• 2~~a~~converges at the 0(e ~ ) rate [19].

(iv) The optimal rate of convergence to zero of the error

n
(1.16) sup I p.v. J ~~~ dx ~ f(x4) $

t~ R j l

where P.V. denotes the principal value and f F Hp(Vd
) is Q (e~~°)

where c is subject to (1.9). The method [19]

(1.17) P.V. 
‘R ~~~~~~~ 

dx — 

j—— N 
f(jh)(X~~~){S(O,l)o(! ))2

h — (wdq/N)4, converges at the O(exp{— (24a—c)n4}) rate , where n - 2N + 1

(e) Let 
~d 

{z—x+iy : erg zj < d} and let Hp (Vd
) denote the

family of all function.s f that are analytic in such that

(1.18) M(f,p,9) — (l+t)2~~ Jf(t e10)J~
’ dt <

for all III < d, and such that f t f I I ~ — {M(f ,p,—f) + M(f,p,d))~”~ < ~~•

The optirnsl rate of convergence of n—point quadratures

f(x)dx ~ ~ v~f(x1
) in H 

~
0d~ 

is 0(e ) where c is subject to
0 i—i



la

(1.8). The method

(1.19) f (x)dx � b ~ jh f(eih)

converge at the 0(e ’~ ) rate [19], where h — (2irdq/N)4 and n — 2N+i .

(1) Let 0d be defined as in (e) above and let H(Vd) denote

the family of all functions f that are analytic in 
~d’ 

such tha t

(1.20) N(f,p 0) — t ’~
1)
~”l (l+t)

2
~’~ I f ( fe ’8) I”  dO <

for all 10 1 < d, and such that If II
~ 

— {N(f ,p,—C) + N(f,p,d)}L’P < ~

The optimal rate of interpolation f(x) ~ ~ f(x i)co
n 4 (x) over (0,~)

i—i J ,J

for f in H(Pd) converges at the O(e~~~~) rate, where cii subject to (1.9).

The method

N
(1.21) f (x) ~ ~ f(eih )S(J,h)e logx

j--N

converges at the O(e 2
~~~~~~~~~ rate 1191, where h — (11d8/N)

½ and

n — 2N + 1.

(g) Consider the solution of the problem

(1.22) f(x) — k(x—t)f(t)dt+g(x) , x > 0

for f , given k and g , and where ~ and g , the Fourier trani~for ms

of k and g , are known functions in Hp(Dd) , as defined in (d) above.

Then the optimal method of approximating f in the form (1.3) for arbitrary

— • •_ • p • _ •__ .
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1 k and g in 
~~~~~ 

converges at the rate 0(e cn 
~ 

, where

—½ ~~~~~• 2 a < c < b . The method in [21] converges at the 0(e an 
~ 
rate.

(ii) Consider the approximate solution of the Hilbert problem

[1). Let 
~d 

be def ined as in (a) above , let each of the in contours of

the Hu bert problem be expressed by L~ — {$~(t): 1 t < 1) where each

is in H(Vd ) , and let the “data” G on each L~ be expressible

in the form g~(t) — G(~~(t)) , where E H
p (Vd) for each i . Then

the optimal rate of convergence of an approximate solution (1.3) to the

exact solution of the filbert problem is Ø(~ 
CII 

~ , where c is subject

to (1.8). The method in [7] converges at the 0(e ~ ) rate.

(j) Consider the solution of the Dirichlet problem M — A 2f

on the exterior of a bounded simply—connected domain B , whose boundary

consists of a finite number of in contours L~ on which we are given

boundary data C , as described in (h) above. Then the optimal rate of

convergence of an approximate solution (1.3) to the exact solution f
½

is 0(e en ~ , where c is subject to (1.8). The method of solution in
½—an[3) converges at the O(e ) rate .

(k) Let 0 € H* (Pd ) , where is described as in (b)

above, and let S be the surface of a body B obtained by rotat•n ~~w

function $(x) about the x—axis. The optimal rate of convergence of

• an approximation (1.3) to each component of the scattered electromagnetic

field due to B obtained by solving the integral equation problem in
½

( 12] is O(e ChL 
) , where c is subject to (1.9). The method used in

[12] converges at the 0(exp{—(2~~ a—c)n
4}) rate.

(1) Consider the solution of the linear problem

___________ _ _ _ _ _ _
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2

(1.23) ~-4 + p(z) + q(z)f — r(z) , f (—l )  — f (l)  — 0
dz

for f , given p , q and r are analytic in as defined in

(a). Assume furthermore, that we can determine a priori, the existence

of ~. solution of (1.20), with the property that the functions

(1—z
2)f”(z), (1—z 2)p(z)f’(z) , (1—z 2)q (z ) f (z )  and (1—z 2 )r (z )  are In

~ ~~~ 
, as defined in (a) above. Then the optimal rate of convergence

p 
½

of an approximate solution (1.3) to f Is O(e
_Cfl 

) , where c is

subject to (1.9). The method in [201 produces a solution of the form

(1.10) which converges at the 0(exp{—(2 a—c)n 1) rate, where n — 2N+1.

(a) We can also state optimal rates of convergence similar to those

in (1) above for solutions of differential equations over (0,~) and over

(— ~~,“) ; moreover, methods are derived in [201 which converge at the

0(exp{— (2~~a—e)n
4}) rate. The methods apply also to the case of

nonlinear equations, and to the solution of partial differential equations.

In the latter case, the best possible rate of convergence in s dimenslons*

— 
l/ (2a)

is 0(e CII 
) ; this functional form of convergence is achieved in [201

for the case of the approximate solution of partial differential equation

problems in two dimensions. Similarly, the best possible functional form

*Consider the approximation of u(x,y) on the square S — [—l ,l]x [—l,lJ by

by n2 basis functions of the form {+~~~(x) *n,L
(Y)

~~ ,&_l 
. L&t u

as an f unction of x (rap. y) satisfy the conditions of Thin 1.2 for each
fixed y (rsp. x) on [—1 ,1]. Then by The. 1.2 there exists a u ( . ,y) such
that v€ H~ (U)~ where v(x , y)  — (l—x 2)4 u(x ,y) , and such that

inf sup f u(x,y) — L w
j

( E v
~
u(xj,yt)* ~~~~ 

o
w 

~
V

L~
Xk l Y L 

(x,y~ES jl  L—l

~

where c is subject to (1.9), in which a in defined by (l.fs), with
d — t/2 2 On the other hand , a Cartesian product formula of the type i L  10)

• using n basi, functions may be uno i to apuroximate is or ~ ‘~ •~

an oxp(—(2 4a—e)n~) error. That in uning n banin functiout . ‘. ~

a rate of convergence of e ,~. Sim ilarly, it is possible to achiev& a•i

• optimal convergence rate a cIn .I / (2 s) using n basil. functions in a dimensions .

_ 
_ _ _ _  •
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for the rate of convergence is achieved in (14] for the case of the

approximate solution of integral equations, in the apace of func tions

considered in [14).

In light of the proof of the upper bound in The. 1.2 (see

also [4,5]),the present paper shows that when approximating functions that

are in H (U) over (—1,1) we can do no better with regards to achievingp ½
the best ~~~ rate, than one can do using rational functions as

bases, or for that matter, the functions used in (1.10).

The present paper is also related, in the sense of optimal

quadraturea, with the work of Sobolev [16] and other Russian mathematicians

(see e.g. [24]) who have verified optimality of certain quadrature rules

with respect to Sobolev norms. Such norms involve the integral of a

power of one or more derivatives, and consequently, using an n—point

method, the optimal rate of convergence is 0(~~c) • Sobolev was

primarily interested in obtaining optimal methods of solving elliptic

partial differential equations via integral equation methods~ In this

regard, we believe that the rules of e.g. [19] have some advantage over

Sobolev—type methods, since in app1ica~’tions, the solution u of an

elliptic PDE is analytic. a.e., and while it is usually not possible

determine the exact nature of the singularities of u, it is possible

to determine a priori the points, or curves or surfaces on which the

singularities of u occur. That is, it is then possible to solve for
— 

]/(2s)
u via an e CII 

method in a dimensions.

___________________ -~~~~~~~~~ - ——• -~~ — — 
• S
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2. The Upper Bound in Theorem 1.1

We find from [19, Eq. (7.4)], that if fE H~(U). then for

any h > 0,

4 — jh jh
(2.1) J f(x)dx — h — 2e 

jh 2 ~~~jh 
— 

~~

—1 j— ( l + e  ) e +1

—w 2/(2h) ~2we 
2 ~~~ J If(re )~d0

2 sinh r-’-l 0

—w
2/h

C 2 i r I I f t l  ~ 2

Lemaa 2.1: Let 1 < p < —, and let f ~ 11 (U) . Then there exists a

constant C~, such that for all x E (—1,1),

(2.2) If(x)I < C~I I f II ~(l — x2)
]
~~

Proof: The Poisson formula yields

f(x) — h i s  
(1— x2) f(r e~

8)dO
1! 

o 1— 2 X c o s O + x

for any x € (—1 ,1), and therefore

• (2.4) If(x)I.5. (1 — x2)II f fI ~ G (x)

where by Eq. 15.3.3 of [1]

(2.5) 0~~(~~) — 2(1 + ~~~~~~~~ q; 1; — 4x 
2q (l + x)

— 2(1 — ~)~~2~~(% I — q; 1; 4* 
2(1 + x) 

• .•~~ -_ _  _ _ _ _ _ _ _ _

____ - - 

— 
• — - .~~~~ -~~~~~ LAt ~- - - •
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r’; .
l—2q F(q— ½ )( — x) r(½)r(q)

as x - .l .

The inequality (2.2) now follows from (2.4) and (2.5).

Now, by ‘(2.1) and (2.2), we have

rl N 2 jh jh

J f(x)dx — h ~ e 
2 f ( e — 1)

—h j—N (1+e ) e +1

jh jti 1 2 —l/p
(2.6) < (C~ e~~ 

/ + 2C h ~ 
2e
4h 2 [1— (

C
•Ih 

— ) ] }~II ~I I
~ j—N+l (1 + e~ ) e~ + 1 

p

< {C~ e
’
~ 

/h + c~ e~~
’
~~} (ffIl~

< C

where n — 2N + 1, and where we replaced h by

t
— -‘ .- — -— ——-——-—-‘-‘-———-—‘ ‘----‘ .~~~ - - •—-----——— : ‘- -~~~

- . — . ‘
-—
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3. The Lower Bound in Theorem 1.1

The function

(3.1) f
~

(z) — (1 ~ Z t > 0,

is in R~(U)~ and it has norm

(3.2) I If~I I~, ~~. I If~I I~, — 1

We also have

J

l 
f
~
(z)dz — 

1 + t
—l 

*U * * fl

~ 
w4f~(z4) — w4e ~

i—i. ’ J i—i

where the second of these is a quadrature formula for approximating
rl
f(z)dz for any f € H~(U)~ and where

—l 
*

* 
1+ z

(3.4) Re a~~~~—

since it is readily seen tha t if 1 for some j ,  then

will be inf inite for some functions f • H~(U)

Hence we now have, in view of (1.2) , that
*

2 ~
w~~a ~~ 1 + t 

— 

j~ h 
wje

(3.5) — a t
—

~~~~g ~~~~~~~~~~~~~ 
~

1 
•
, - .  , ~~~~~~—
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.4

By taking the Laplace transform of each side of (3.5) we find

that

(3.6) 
~~~~~ 

~~ 

— 

j~l 
s

W
:~.
S

aj
~

where

— I ~‘:~ 
dt

Lemaa 3.1: Let $ be given by (3.7) . Then

( 3.8) $(s) — 2se5 log + g(s)

where g is an entire function. Moreover $ is uniformly bounded on

[0 ,.]

Proof: The representation and everywhere analyticity of g follows by

inspection of the identity

(3.9) $(s) — 2se5log .~~
- + 2se5log(s + a)

ra —u s , -u—a
+ 1  2s[e - e ] dU + 28

j 5+ u  s + u + a
0 0

which i. valid for all a ‘ 0 . The boundedness of $ on R is a

consequence of

$(s) — I — ~~~~~~~~~~~~~ du c 2 — 2 .

We now note that
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•1 2

fT (3.10) > sup ,(,2) —

f_ i s + a j

2 2 ½

i~ C
a[J ~~~~~ 

- 

j~ l (~2 + a~)(s2 + a) 
da~

where a > 0, and where

(3.11) C - (f 2 
da 

2~ 
- (i)

½
a314

+ a )  if

Setting

(3.12) (Hf)(x) - - P.V. J f(t) dt

for any f E L 2 (R) , where P.V. denotes the principal value , it follows

that

(3.13) I I H f I I 2 — 11 f 11 2
Let us define • by

(3.14) $(x) H(~~’~~ } (x)
S + a

and let us note that if a and b are positive n~~bers, then

s x x - a(3.15) H(~~~ 2 1(z) — ¼ ¼ 2 2(s + a)(s + b) a + b (x + a) (z + b)

where this identity may be established via the use of Fourier tra nsfor ms .

Let us define polynomials p and q of degree < n by

•~~~~~
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F

f1 l6~ 
p(x )_ ç _____ _ _ _ _ _ _

2 ‘ ½ ¼ 2 ½q(x ) f—i a +aj z +a~

It then follows from (3.10), (3.13), (3.14), (3.15) and (3.16), that

r 2 2 ½
(3.17) C

a J •(x) — 2 
x p(x ) dx

x + a q ( x )

L e a  3.2: Let denote the ellipse in the complex plane, having foci

at ±1 and having sum of semi—axes equal to p > 1 . In (3.14) and (3.16),

let a — 2 sinh (1) — e — e 1 
. Then on [—1 ,1]

22x
(3.18) •(x) — 

11 x e 
2 ~~ x + *(x)

a + x

where $(—x) — —4i(x) , and where 
~
, is the restriction to [—1 ,1] of a

function which is analytic and bounded in

Proof: Let us set w(a) — $(s2)/(,2 + a) . The functions w and • are

conjugate harmonic functions and therefore 1 is analytic wherever w is

analytic. The singular behavior of • at x — 0 i~ determined by

considering the first of the two integral.

(3.19) •(x) — — 
P;V. w(s) ds — 

~~~ J
—2 I s I > 2

The second integral on the right is clearly analytic at z — 0; on the

other hand

2 2 n
(3.20) — 

P;V. 

12 

s 1:g(l/f sf ) di — 
w z2”sgn x +

where g~ is analytic at x — 0 • The representation (3.18) thus follows .

- ~~~~ ~~~~~~~~~~~~~ __ -‘
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The analyticity and boundedness of * in E is a consequence of the

analyticity of s
2
e
52/(a + ~2) in E (2e~ ; the relation •(—x) — -4(x)

follows from (3.14) , since w(—s) — w(s)

Let a — [n] 3’~
4 and let um and v~~1 be polynomials such

that

2 2
— inf sup I2eX — u(x2)I — sup cx - u (x2)I

uti’ x~.[—l ,l] x [—1 ,1] is

(3.21) in

C
2 

— inf sup — v(x2)J — sup J*(x) — V
•V~F15_1 xf [— l ,hl x [—1 ,13 x

where denotes the family of all polynomials of degree < a . Then [22]

(3.22) 1t11 + c (C/C )e~~

where C~ Is as in (3.11), and where C is independent of a

Now , from (3.17), (3.18) and (3.21),

4 2 2 ½
(3.23) -t > C J 1(x) — 2 

x p(x) dxn a 
—l 

x + a q ( x )

.~~ c [ f

1
(x
:u::: sgn x + x Ve_l(X) - ~~~~~ ~~

:
~~ I

2
c1*}

½

~~~~

e m

2Um
~~

2) + x(a + x2)v~~1(x2) - 

:
~~I

2
~~)½ 

‘

~~
;,‘

2the last inequality being a consequence of a + x c a + 1 on [0,1]

_ _ _ _ _ _ _ _ _  _ _ _ _ _ _ _ _  
_ _ _  

t

- 
. 

~~~~~--~~~~- - ‘_ _ ~~~~~~~~~~
_ i

~~~~
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Upon setting

IP(x2) _  p(x 2) — (a + x2)v~...1(x
2)q(x2)

(3.24) 
IQ(x 2) - U

m
(X )q(x )2 2

we have P ,QE IP
55~~ , and so (3.23) yields

2C f 1 
4(P(x

2) — xQ(x2) ( 2
d 

½
a 

_ _ _ _ _ _ __ _ _ _ _ _ _  -ist > _ _ _ _ _ _ _ _ _

x — C en _ l + a t i  ~ J x q(x2) ) }
(3.25)

2C 1 1 2a i ( 4 2 2 IP(x2) — ZQ(x2
) I  dxl —ax u ~ ( x )

j xQ(x 2) 
— C e

Next , (3.21) yields u (x2) > 1 on [0,13 ; thereforea

(3.24,) 2C~ 
( 
~l PN(x

2) — x QN (x2) 2 I
U — 1 + a J J x QN (x2) J dzj 

- Ce m

t
o

In (3.26) and in what follows

N n + n

(1 2 2 2
- inf 

J ~~ ~ (x) - x Q(z ) dxN P ,Q~~~~0 I x Q(x~)(3.27) Q(½) >0
x

— J
i 

41
P~(Z) — 

~~~ 
2 2

0 x Q w(z
2) 

dx.

L a  3.3: QN (x2) ) 0 on (0,1)

Proof: We may assume without loss of generality that - ~ ~N 
and

z have no co on zeros on (0,1]. However, in this case we cannot



18

have 
~~~~~ 

— 0 for some F~ € (0,1], since would then be infinite.

In view of (3.27) , we must have > 0 on (0,1]

L a  3.4: Let S be the small subset of [0,1] on which P
N

(x2) ‘ 0

Then, with I — [0,11

(3.28) ‘
~
‘N ~~ ~~~~~~~~ 

~ 
x J ( ) J dx + J x~dx

2N+1 I—S S

Proof: From (3.27), we have, since PN(x
2
) > 0 on I — S, and

< 0 on S, that

P (x 2) — x QN (x
2)

(3.29) N 
2 > 1  on S

x Q N (x)

and

PN (x
2) - ~ ~‘N

(x2) — x

2 2 2 on I — S
x Q N(x) PN(x)+xQN(x)

and therefore

j’ 4 
P~(x

2) — x Q (x2) 2 
,

(3.31) y > x 2 
N 

2 dx + Ix dxN PE( x ) + x QN ( x )

from which (3.28) follows.

L.maa 3.5: Let q E 
~ 2N+l be defined by

(3.32) f x4(
~~~~

)I2dx inf f x4(1’
~~~)I

2
dx

I—S 2N+l I—S

• Then all zeros of q are on [0 ,1) .

Proof: Clearl y I — S must have positive measure , for otherwise (3.31)

I 
— 

-
. 

- 

A - -
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would i~~ly that > 1,5, costradicting (2.6) . Let ~ be a zero of

q which ii not on (0,1) . Then set

Ci) q1(x) — q(x) if ~ e (—1 ,0)

(ii) q1(z) — 
l +x ~ q(z) if ~ —l

(iii) q1
(z) — ~~~~~~~~~~ q(x) if ~ > 1

(iv) qj(x).~~~
Z~~~~ j~~q(x) if ~~— u + iv, v # o.

In all* of the these cases 
-

q1(x) 
_ _ _q1(—x) < q(—x) a.e. on (0,11

This however contradicts the definition of q, since I — S has positive

msasurs. -

L~~~ 3.6: Let be defined as in (3.27). Then

y
’~~ ~~~~ J

l
z4I;~~)I2dx~

- 
~~ 211+10

2~5~~(N ~J~)¼.~~[...2if5
½
~ls44)

½]

Proof: By L s  3.5, all of the 211 + 1 zero s of q defined in (3.32)

ar e on (0 ,11 and ther efore

*lf in (iv) we have lul > 1, then q1(z) Fq1(-*) can be further reduced
in .sgsitud. a s .  on (0,11 via th. use of (Li) or (iii).

~~ ~~~~ . -
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2N+l x — ~~(3 34) 1q(—x)1 1—1 
+ 

< 1 a.e. on (0,1]

L e a  (3.4) now yields

> j x4I~~~~ )~
2dx + Jx

4dx

2
> f  ~~~~~ dx
— J q(—x)
0

from which the first inequality on the right—hand side of (3.33) follows.

The second inequality on the right—hand side of (3.33) is due to Rahman and

Schaeisser [13]; this was established via a procedure resembling t 1 t  of

Newman liii.

Let us now complete the proof ot the lower bound in (2.5).

By (3.5), (3.10), (3.26), (3.27), (3.33) ~r.iid in — [n3’
~
’4

J we have

(3.36) an > Yn ‘ t > 
2C 

[2w5~~ (n + n3’4 +

3/4
exp[—5

1
~ir (n + a

3’4 + ½)’~]— C~e
n

Hence given any c > 0 there exists an n(c) > 0, such that

(3.37) o~ > exp [— (5~ir +

for all n > n(c)

This completes the proof .
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4. 
- 

The Upper Bound in Theorem 1.2

The function p11 
(see (2])  def ined by

2 2N a - x

1—1 l _ a
j
x

(4.1) 
2j — 1

2N K ; k ] , 0 < k < i

has the following proper ties*

(4.2) 
~~~~~ 

< (k2~)
½ 

< 2A~~2 if _k½ < x <

x — exp(—iiK’/KJ

< 3. jf z EU; 1p 11
(z) I 1 if I z i  — 1

For x E (—1,1), we consider the expression

c
~N

(x) — 
~~~~~~~~ . 

~~~~

-

~~

- :
(4.4)

— f (x) — rN(x)

where r11 is a rational function of degree < 211 + 1

Furthermore, in view of (4.2) and (4.3), we have

2~”~1I f i  1 ( l  — X
2)C

q
(X) if -k~ ~ x ~

(4.5) k11
(x) I .5. * 2H f I I ~ (1 — x )G q (X) if x ~ - (—l ,i), lxi ~~ k

½

where

*In [15 p. 326) one finds the relationships
l~ V

in 
2~~~~ 2

2
~~~~+(k__)~

‘ — — A + + , yi.iding (4.2).a

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  - — ------—-———--~~~~~~ 
— 

~~ ‘ — — 

~~~~~ .
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~1/p
*(4.6) i I ~I i — h a  IL. I I f ( r z ) l ” Idz l I

2 ~iP Ip — 12w II i 
~~~ 

— r z J~. i z i —

2 2 q ll/q

(4.7) G (x) - him Il I Ii - r a I ldz I I a — cq 
r+l

l ~~~~~ 
— 2xcos e + x2 I~

J

and where 1/p + l/q — 1 . We thus find that

~ r1i+ 9 
l/q

— 1/q
Gq (x) — 

1 + x2 + 1)~

2 I 12 [F(~ 
.1+ 1. £~~. 1 ; r 2) 1‘ 2  2 ’ 2

(4.8)
4x

— 

1 + x2

By formula 15.3.3. of (1] we may rewrite (4.8) as

q r~~ 
~

_ _ _ _ _ _ _  
2 ~h/qc

q
(x) - 2(1 - ~2)l/~

_l
(~ + x2)~~’ 

~~ + ~)
I?(½, 1, ~~~+ 1 ; -r

1 2r(~~+
1 ~ l/q

2(1 - ~2)l/q i~ I
(4.9) 

- 

[w½(q - l ) r (q/2 ) J  
if q > 1

log (
i 

2~ 
if q — 1

Substituting (4.9) into (4.5), we get for q > 1

I (1-x)I c N(x) I 
4[ 

2r(~-+ 1) ~l/q 
2

— 
wJ*(q — l)r(~/2)J 

p

if _k¼ .5.x 1k
¼

_ _  
- ~~~~~ --- . - -- --~~-
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l/q
2F(a +1) *

(4.10) 
2 2 

— x
2)

1
~~~i i f I I

w (q — l)r(q/2) 
p

if ~ X E (.1,1) lx i  ) k~

while if q l

‘~N~~~’ ~~~~~~~~ 
(1 — x2

)log{ 21~~H f 1LD
if k½ <x .5.k~~ i

(4.11)

~~~ 
(1 — x2)log[ 

~2)i~~~
l:

- if x€ (—1 ,1) and lxi > k½

Upon noting that [17, Eq. (2.23)1

(4.12) 1 — k < 8 SXP{l;; i,A]

we find that

* 11 ½Cq l l f i l p exp 
L ~ 1og~~ , 0.5~ lx i  < k

(4.13) k11
(
~ l 

~ r 21
Cq I I f H * exp~~9 , k½ < )x) c 1

P L1°~~

if q ‘ 1 and where Cq depends only on q, and

log(2/i) exp ~~~
. iog~j 

if 0< izi k¼ 
,

is~(x)I ~
(4.14) 

— 

- 
1:; ~~~~ 1~

- 
10: 

~ If k½ .5. xi < 1

if q .1. 

_ _ - -~~~~~~~~~~~~~~~~ - - - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -~~~~~~~~~~

— — ---—-5 S 
S — - —-

~ 
~_ - _ _,.
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By taking log(l/A) — 2½Ir/N’~, we find , in all cases, that

(4.15) kN(x)I .5.C~ I I f Ji (N/2)½exP
[
~~~½ 

N’~
J

which, upon replacing N by (n — 1)/2, yields the upper bound in

Theorem 1.2

We remark that the same upper bound is obtainable using approx—

imations derived in Theorem 7.1 of [10]. Since the approximation technique

of [10] does not involve rational approximations, this suggests strongly

that the constants in the upper bounds in Theorems 1.1 and 1.2 cannot be

improved.

-
_ _—- S--- - ---~~~ -5~~~~~~~~~~ -- S - 

- 
-~
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5. The Lower Bound in Theorem 1.2

Since g € H~(U). where g(z) — f(z)/(l — a2), Theorem 1.1
implies that

(5.1) exp[_ (5½w + c)n’~] ir -‘( f (x )  
— T (f)(x)Idx— 

i~H (U),J]fJ 1*_i 
~~~~. 

Il — 1 — x
2 ~ J

By Lemsa 2.1,

(5.2) f(x)~~ < c(l — x2)~ul’~ , —1 < x < 1
• 

~1 — x

while by (1.4) and Leimna 2.1,

T (f) (x) 2 -1/(5.3) 2 < C C ( l — x )  p .
l — x

Thus (5.1) implies that

(5.4) exp[—(5
3
~w + C)

¼n’*]

n o  f

l_6 
dx__ + 2 C~(l + C) f’ (1 — x2)4~’h’dx

1+6 ix~~.l 6

where, subject to (1.4),

(5.5) £ — inf sup sup if(x) — T~(f)(x)I
~ T~ f~1;(u).IIfII;—l —l<xcl

-nthat is , by taking 6 — 2e , we have

- - .

.

-

- - -

~~

. -

~~ 

-- — -
~ 

— - I
- - _,t , _ - __

~
__

~ 
S
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(5.6) ~~p (_ (5½w + c)n
3
~] ~ 

Cn,ofl + 2q C~(l +

which yields the lower bound in Theorem 1.2

_ _ _ _  - S~~~~~~~~ -
~~~~~~~~~~~~~

-
S S~S__ . 

- .~~~~ .~~
- - - . -

~ ~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~ 
j

~

jj

~~~
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